Part Number Hot Search : 
LK115D50 SR30A0CT PELC5 BCM8152 1C220 D4448 FM25V01 BCM8152
Product Description
Full Text Search
 

To Download CR6CM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI SEMICONDUCTOR THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
CR6CM
OUTLINE DRAWING
10.5 MAX
3.20.2
Dimensions in mm
4.5 4
1.3
16 MAX
12.5 MIN 3.8 MAX
TYPE NAME VOLTAGE CLASS
1.0
0.8
2.5
7.0
3.60.2
2.5
4.5
0.5
2.6
123 24 1 2 3 4
Measurement point of case temperature
* IT (AV) ........................................................................... 6A * VDRM ..............................................................400V/600V * IGT ..........................................................................10mA
3 1
CATHODE ANODE GATE ANODE
TO-220
APPLICATION Switching mode power supply, ECR, regulator for autocycle, motor control
MAXIMUM RATINGS
Symbol VRRM VRSM VR (DC) VDRM VD (DC) Parameter Repetitive peak reverse voltage Non-repetitive peak reverse voltage DC reverse voltage Repetitive peak off-state voltage DC off-state voltage Voltage class 8 400 500 320 400 320 12 600 720 480 600 480 Unit V V V V V
Symbol IT (RMS) IT (AV) ITSM I2t PGM PG (AV) VFGM VRGM IFGM Tj Tstg --
Parameter RMS on-state current Average on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine half wave, 180 conduction, Tc=88C 60Hz sine half wave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
Ratings 9.4 6 90 34 5 0.5 6 10 2 -40 ~ +125 -40 ~ +125
Unit A A A A2s W W V V A C C g
Peak gate power dissipation Average gate power dissipation Peak gate forward voltage Peak gate reverse voltage Peak gate forward current Junction temperature Storage temperature Weight Typical value
2.0
Feb.1999
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IRRM IDRM VTM VGT VGD IGT IH Rth (j-c) Parameter Repetitive peak reverse current Repetitive peak off-state current On-state voltage Gate trigger voltage Gate non-trigger voltage Gate trigger current Holding current Thermal resistance Test conditions Tj=125C, VRRM applied Tj=125C, VDRM applied Tc=25C, ITM=20A, instantaneous value Tj=25C, VD=6V, IT=1A Tj=125C, VD=1/2VDRM Tj=25C, VD=6V, IT=1A Tj=25C, VD=12V Junction to case V1 Limits Min. -- -- -- -- 0.2 -- -- -- Typ. -- -- -- -- -- -- 15 -- Max. 2.0 2.0 1.7 1.0 -- 10 -- 3.0 Unit mA mA V V V mA mA C/W
V1. The contact thermal resistance Rth (c-f) is 1.0C/W with greased.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 103 7 Tc = 125C 5 3 2 102 7 5 3 2 101 7 5 3 2 100 0 1 2 3 4 5 RATED SURGE ON-STATE CURRENT 200
SURGE ON-STATE CURRENT (A)
180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
GATE CHARACTERISTICS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
VFGM = 6V
PGM = 5W
GATE TRIGGER CURRENT (Tj = tC) GATE TRIGGER CURRENT (Tj = 25C)
103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
TYPICAL EXAMPLE
VGT = 1V IGT = 10mA
PG(AV) = 0.5W
VGD = 0.2V IFGM = 2A 10-1 5 7 101 2 3 5 7 102 2 3 5 7 103 2 3 5 GATE CURRENT (mA)
100 -40 -20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (C)
TRANSIENT THERMAL IMPEDANCE (C/W)
1.0
GATE TRIGGER VOLTAGE (V)
0.9
0.8 0.7 0.6 0.5
0.4 0.3 0.2
,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,,
DISTRIBUTION TYPICAL EXAMPLE 0 20 40 60 80 100 120 JUNCTION TEMPERATURE (C)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
101
100
10-1
0.1 0 -40 -20
10-2 10-3 2 3 5 710-22 3 5 710-12 3 5 7 100 2 3 5 7 101 TIME (s)
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE HALF WAVE) 16
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160
CASE TEMPERATURE (C)
14 12 10 8 6 4 2 0 0 2
= 30
180 120 90 60
140 120 100 80 60 40 20 0 0
360 RESISTIVE, INDUCTIVE LOADS
360 RESISTIVE, INDUCTIVE LOADS 10 12 14 16
= 30 60 90 120 1 2 3 4 5
180 6 7 8
4
6
8
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE FULL WAVE) 16 180 120 90 60
CASE TEMPERATURE (C)
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 140 120 100 80 60 40 60 20 0 0 2 4 6 8 10 12 14 16 120 = 30 90 180
14 12 10 8 6 4 2 0 0 2 4
= 30
360 RESISTIVE LOADS
360 6 RESISTIVE LOADS 8 10 12 14 16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
AVERAGE POWER DISSIPATION (W)
CASE TEMPERATURE (C)
MAXIMUM AVERAGE POWER DISSIPATION (RECTANGULAR WAVE) 16 = 30 DC 14 60 270 180 12 120 90 10 8 6 4 2 0 0 2 4 6 8 360 RESISTIVE, INDUCTIVE LOADS 10 12 14 16
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (RECTANGULAR WAVE) 160 140 120 100 80 60 40 20 0 0 2 = 30 90 180 60 120 270 DC 360 RESISTIVE, INDUCTIVE LOADS
4
6
8
10
12
14
16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
100 (%)
160 140 120 100 80 60 40 20
TYPICAL EXAMPLE
BREAKOVER VOLTAGE (dv/dt = vV/s ) BREAKOVER VOLTAGE (dv/dt = 1V/s )
BREAKOVER VOLTAGE (Tj = tC) BREAKOVER VOLTAGE (Tj = 25C)
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 Tj = 125C TYPICAL 140 EXAMPLE 120 IGT (25C) # 1 4.7mA 100 # 2 7.2mA 80 60 40 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/s) #1 #2
0 -40 -20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (C)
Feb.1999
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 50 45
HOLDING CURRENT (mA)
HOLDING CURRENT VS. GATE TRIGGER CURRENT
HOLDING CURRENT (mA)
40 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 20
,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
TYPICAL EXAMPLE
100 -40 -20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (C)
GATE TRIGGER CURRENT (mA)
TURN-ON TIME VS. GATE CURRENT 5.0 4.5
TURN-ON TIME (s)
TURN-OFF TIME (s)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 #
VD = 100V RL = 16 Ta = 25C TYPICAL EXAMPLE IGT (25C) # 5.2mA
80 70 60 50 40 30 20 10
,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,
TYPICAL EXAMPLE 0 20
TURN-OFF TIME VS. JUNCTION TEMPERATURE
DISTRIBUTION
0 10 20 30 40 50 60 70 80 90 100 GATE CURRENT (mA)
0
IT = 6A, -di/dt = 5A/s, VD = 300V, dv/dt = 20V/s VR = 50V 40 60 80 100 120 140 160
JUNCTION TEMPERATURE (C)
REPETITIVE PEAK REVERSE VOLTAGE (Tj = tC) REPETITIVE PEAK REVERSE VOLTAGE (Tj = 25C)
100 (%)
REPETITIVE PEAK REVERSE VOLTAGE VS. JUNCTION TEMPERATURE 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 -40 -20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (C)
100 (%)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 104 7 TYPICAL EXAMPLE 5 3 2 103 7 5 3 2 102 7 5 3 2 101 10-1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE CURRENT PULSE WIDTH (s) tw
0.1s
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
Feb.1999


▲Up To Search▲   

 
Price & Availability of CR6CM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X